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' For formulas cited without proof see W. Magnus and F. Oberhettinger, Formulas and Theorems
for the Special Functions of Mathematical Physics (Chelsea, 1949).

2 This theorem imitates known facts for Fourier expansions on compact group and homogeneous
spaces. For summability at points see G. Szegb, Orthogonal Polynomials (1939) and references
there listed to publications by Kogbetliantz, Gronwall, Fej&r, and others.

3 To Theorems 3 and 4 compare S. Bochner, "Closure Classes Originating in the Theory of Prob-
ability," these PROCEEDINGS, 39, 1082-1088, 1953.

4 See S. Bochner, "Diffusion Equation and Stochastic Processes," these PROCEEDINGS, 35,
368-370,1949.
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Our main purpose in this note is to determine the coset spaces of semisimple Lie
groups which admit a complex analytic Kiahlerian structure invariant under the
group; we shall also obtain some information on coset spaces with an invariant
symplectic structure. In the compact case, all the manifolds thus obtained are
algebraic and admit a complex analytic cellular decomposition; in the noncompact
case, they are complex analytically fibered, with compact Kiihlerian fibers, over
Hermitian symmetric spaces. As an application, we see that a bounded domain
in the space of several complex variables which has a transitive semisimple group of
complex analytic homeomorphisms is symmetric in Pi. Cartan's sense,' thus giving
a partial answer to a well-known question raised by that author. Only brief in-
dications of proofs are given; the full details will appear elsewhere.

1. Notations and Definitions.-G denotes a connected Lie group, which, except
in section 1, is always supposed to be semisimple; U is a closed subgroup of G;
and G/U is the space of left cosets of G modulo U, on which G acts by the left trans-
lations. We always assume G to be effective on G/U, i.e., U contains no subgroup
# {e} invariant in G. Lie algebras are denoted by German letters and, unless
otherwise stated, are taken over the real numbers; the Lie algebra of a group G,
U, ... is of course denoted by the corresponding German letter.
A complex analytic manifold is Kiihlerian if it is endowed with a Hermitian metric

whose imaginary part Q, the so-called associated form to the metric, has exterior
differential zero; in any case it is an exterior form of degree two and maximal
rank everywhere. An even-dimensional manifold carrying a form Q with the last-
named properties is called symplectic; it is always orientable; clearly, Kiihlerian
implies symplectic.
A coset space is homogeneous complex (resp. homogeneous Kiihlerian, resp.

homogeneous symplectic) if it carries a complex analytic structure (resp. Kahler-
ian structure, resp. a form of degree two and maximal rank everywhere) invariant
under the group. For a compact connected group the usual averaging process
shows that symplectic implies homogeneous symplectic and that "homogeneous
complex and KAhlerian" implies "homogeneous Kahlerian,"
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Ht(X) (resp. H'(X, Z)) is the ith cohomology group of the manifold X with real
coefficients (resp. integers).

2. A Necessary Condition. A Lie algebra is reductive2 if its adjoint representa-
tion is fully reducible or, equivalently,3 if it is the direct product of its center by a
semisimple ideal; a Lie subalgebra b of a Lie algebra a is reductive in a if the re-
striction to b of the adjoint representation of a is fully reducible in a.

PROPOSITION 1. Let G/U be homogeneous symplectic, U be connected. Assume u
to be reductive in g, and let c be its center. Then u is the centralizer of c in g.
The proof makes mainly use of cohomology of Lie algebras and is based on the

three following facts: (a) a semisimple Lie algebra has vanishing first and second
cohomology groups; (b) the centralizer of c in g is reductive in g; (c) there exists an
element h in the second relative cohomology group H2(g, u) such that htm - 0 (2m =
dim G/U).
Remarks: (1) It follows from Proposition I that u contains a Cartan subalgebra

of g. (2) Proposition 1 applies when G/U is homogeneous Kahlerian, because in
that case u is readily seen to be reductive in g, even when U is not compact. It
also applies for G compact, G/U symplectic. (3) For a particular case of Propo-
sition 1, see A. Lichnerowicz, Compt. Rend. Acad. Sci. (Paris) 237, 695-697
(1953).
THEOREM 1. Let either G/U be homogeneous Kahlerian, or G be compact and

G/U be symplectic. Then U is compact, connected, and equal to the centralizer of a
torus of G. Moreover, G has center reduced to { e }1 4 and G/U is simply connected.
For U connected, this follows essentially from Proposition 1 and remark 1.

In the general case, one considers the covering G/Uo (Uo connected component of
the identity in U), on which the given structure on G/U induces a similar structure,
invariant under G, and also under U/Uo operating by right translations; the main
point is that U/Uo operates faithfully on the identity component of the center of
UO, and that follows from the lemma: If the centralizer of a torus in a connected
semisimple Lie group has a compact identity component, then it is equal to it.

COROLLARY. Let G = G1 X ... X Gk be a decomposition of G into a product of
simple groups. Then U = U1 X ... X Uk where Ui c GU and is the centralizer of a
torus in GU; hence G/U is isomorphic5 to the product of the spaces GU/UZ.

3. Complex Semisimple Lie Algebras.-We recall here a few known facts and fix
some notations. Let g be a compact semisimple Lie algebra of rank 1, dimension
n = 1 + 2m; let gc be the complexification of g and fC be a Cartan subalgebra of
gc such that b = bc n g has (real) dimension 1. We denote by 4 2 7r iaj (1 _ j <
m) the roots of gC with respect to bC; the aj's are therefore real-valued on f, and,
moreover, we assume them to be positive with respect to some total ordering of the
space b* dual to f, chosen once for all, the fundamental roots being 2 7r iak (1 _

k . 1). The scalar product induced on b or f* by the Killing form is written (,),
and W is the Weyl chamber (in f or f*) defined by (ak, y) > 0 (1 . k . 1).

e,j (C = 4 1,1 = 1 . . m) is an element of gc satisfying

[h, eq] = E2 7riaj(h) (h e b)I

chosein in the usual way, and g is spanned over the reals by l, by ej + e-j and
i(ej - ej) (1 . j < m).
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Let GC (resp. G) be the group with center reduced to { e } and Lie algebra g' (resp.
g). We denote by L the closed solvable subgroup of GC generated by bC and the
ej's (1 . j < m) and by Lb (b e W) the subgroup generated by bt, the ej's (1 < j <
m), and the e-k for which (ak, b) = 0 (it is readily seen that these elements form the
Lie algebra of a closed subgroup).

b* may be identified in a well-known way to H'(T), where T is a maximal torus of
G with Lie algebra t; in this identification H'(T, Z) becomes the set of h e b* for
which 2(ak, h) (ak, ak)1 (1 . k < 1) is an integer.

4. The Compact Case.-If G is compact semisimple, then G/U has the first Betti
number zero; conversely, any compact coset space of a Lie group with vanishing
first Betti number is a quotient of a compact group6 which, as is easily seen, may be
assumed to be semisimple. Hence the results of sections 2 and 4 give all algebraic
homogeneous manifolds with first Betti number zero.
THEOREM 2. Let G be compact semisimple and U be the centralizer of a torus.

Then G/U is homogeneous Kahlerian and algebraic.7
There exists clearly b e W such that u is the centralizer of b; one proves that U =

G n Lb (notations of sec. 3), whence a natural homeomorphism of G/U onto
GC/Lb commuting with G and the homogeneous complex structure. The invariant
Kiihlerian metric is then constructed by means of Maurer-Cartan forms. We
sketch here the proof for G/T (T maximal torus), i.e., Lb = L; the general case is
analogous.

Let us denote by w' the left-invariant Maurer-Cartan forms on GC which induce on
gc the base dual to (ef1) and are orthogonal to )C; using the Maurer-Cartan equations
and well-known properties of constants of structure, one shows that

j= m
Q i EcSjwA co-'

= 1

is closed if and only if

cp + Ca = Cr whenever ap + a, = ar.

Q is therefore determined by the ck's (1 . k < 1), which are arbitrary; its restriction
on G is left-invariant under G, right-invariant under T, and represents a form on
G/T, which is of type (1, 1) because - corresponds to cJ? in the complex structure
constructed above. For real cj's it is real-valued, and its (real) cohomology class
may be shown to be the image by transgression of the element h e H1(T), for which
(ak, h) = Ck (1 k < 1). If h belongs to the interior of W, all the cj's are > 0, and

=m
ds2 = E cjw cw (usual product)

j = 1

is a Kiahlerian metric on G/T. If, moreover, h e H1(T, Z), its image by transgres-
sion is an integral class, the corresponding metric is a Hodge metric, and G/T is
algebraic by a result of Kodaira.8
Remark: This theorem can be proved in other ways; for instance, one can con-

struct projective imbeddings with the help of linear representations, as was noticed
by J. Tits and, independently, by A. Weil and the author (yet unpublished); also,
M. Goto proved that G/U is rational algebraic (to appear in Am. J. Math); finally,
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the existence of the homogeneous complex structure is part of a result of H. C. Wang
(Am. J. Math., 76, 1-32, 1954). The above method has been sketched, however,
because it is also used in section 6.

5. Complex Analytic Cellular Decompositions.-A complex compact manifold
Mk has a complex analytic cellular decomposition if it admits a partition into a
finite number of (complex) submanifolds Mi, the "open cells," each isomorphic to
some complex affine space and having a set-theoretical boundary made up of open
cells with strictly smaller dimensions; the closures of the Mi's define, then, a cellular
decomposition, whose cells have even dimensions; consequently, they are all cycles,
and they form a basis for the integral homology groups of M, which thus have no
torsion and vanish in odd dimensions. As is well known, C. Ehresmann9 proved
the existence of such decompositions for certain classical spaces, like the complex
Grassmann manifolds or the nondegenerate complex quadrics; his method is geo-
metric and uses mainly the Schubert systems, but this result can also be given a
group-theoretical proof, valid for all spaces considered in section 4.
THEOREM 3. Let G be compact and G/U be homogeneous Kdhlerian. Then G/U

admits a complex analytic cellular decomposition by "open cells" which are biration-
ally and biregularly equivalent to complex affine spaces; in particular, its integral
homology groups have no torsion. 10

If we represent G/U in the form GC/Lb as above, the open cells are just the orbits
of L; to prove it, one uses notably a recent (unpublished) result of Harish-Chandra
(first checked by Bruhat for the classical groups, as announced in Compt. rend.
Acad. sci. (Paris), 238, 437, 1954), to the effect that the double cosets LgL of L in G'
are finite in number.

6. The Noncompact Case.-A Hermitian manifold is Hermitian symmetric if
every point is an isolated fixed point of an involutive automorphism of the Hermit-
ian structure; it is then always homogeneous Kahlerian."I The quotient G/K of a
simple noncompact group with center reduced to {e by a maximal compact sub-
group carries a Hermitian symmetric structure invariant under U if and only if K
has a nondiscrete center. "I
PROPOSITION 2. Let G be simple noncompact, with center reduced to { e }, K a maxi-

mal compact subgroup of G, and U a subgroup of K which is the centralizer in G of a
torus. Then G/U is homogeneous complex and homogeneous symplectic.'2 It is
homogeneous Kahlerian if and only if G/K is Hermitian symmetric; in that case, the
fibering of U/U by K/U over G/K is complex analytic.

Let G, be a maximal compact subgroup of the complexification GU of G, contain-
ing K; the group U is also centralizer of a torus in GU, and (Theorem 2) G,/U is
homogeneous Kahlerian; it is easily shown that G/U may be identified with an
open submanifold of GU/U, whence the homogeneous complex structure. The
second part of the theorem is obtained by detailed analysis of invariant differential
forms. From that and from the corollary to Theorem 1, one gets Theorem 4.
THEOREM 4. The homogeneous Kahlerian coset spaces of semisimple Lie groups

are all simply connected. They are exactly the products of the Kahlerian homogeneous
spaces G/UiUwith Gi simple, Ui centralizer of a torus, and where either GU is compact
or Gi has a maximal compact subgroup with nondiscrete center. Any coset space G/U
of this type has a complex analytic fibering with fiber K/U (K maximal compact) over
a Hermitian symmetric space.
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A bounded domain in C' possesses a Kahlerian metric invariant under all com-
plex analytic homeomorphisms (the Bergmann metric); hence, if it is homogeneous,
it is automatically homogeneous Kahlerian. It is said to be symmetric' if every
point is an isolated fixed point of an involutive complex analytic homeomorphism;
this implies Kahlerian homogeneity. i2. Cartan' has asked whether every bounded
homogeneous domain in C' is symmetric and has checked that it is indeed the case
for n = 1, 2, 3. Since a domain does not contain a connected compact complex
analytic submanifold with more than one point, we deduce from Theorem 4:
THEOREM 5. A bounded domain in C" which admits a transitive semisimple

group of complex analytic homeomorphisms is symmetric.'3
I P. Cartan, Abhandl. Math. Sem. Hamburg, 11, 116-162, 1935.
2 J. L. Koszul, Bull. Soc. Math. France, 78, 65-127, 1950.
3Ibid., p. 87.
4Recall that G is effective on G/U by assumption.
As coset space only.
D. Montgomery, Proc. Am. Math. Soc., 1, 467-469, 1950.

7I.e., is complex analytically homeomorphic to a complex submanifold of some complex pro-
jective space, imbedded without singularities.

8 K. Kodaira, these PROCEEDINGS, 40, 313-316, 1954.
9 C. Ehresmann, Ann. Math., 35, 396-443, 1934.

10 This applies, e.g., to G/T (T maximal torus), as had been partly checked by the author (Ann.
Math., 57, 115-207, 1953, sec. 29). The absence of torsion on these spaces has also been proved
bv R. Bott, these PROCEEDINGS, 40, 586-588(1954).

11 A. Borel and A. Lichnerowicz, Compt. rend. Acad. sci. (Paris), 234, 2332-2334, 1952.
12 In fact, it always carries an invariant indefinite Kahlerian metric.
13 Theorem 5 has also been obtained independently by J. L. Koszul (yet unpublished). For

the homogeneous spaces of theorem 2, see also J. Tits, Compt. Rend. Acad. Sri. (Paris), 239,
466-468(1954).
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1. Definition of the Green's and Neumann's Spaces.-The classical Green's and
Neumann's problems for a function on a subdomain of Euclidean n-space are the
problems of finding a harmonic function with prescribed values on the boundary
for the function and its normal derivative respectively. Our purpose here is to state
a generalization of these problems to differential forms on an arbitrary Riemannian
manifold; detailed proofs will appear elsewhere.
By "differentiable" we shall always mean "differentiable of class C'," and by

"manifold" we shall mean "orientable differentiable manifold." All Riemannian
structures are therefore of class C' .
On a Riemannian manifold of dimension n we have, in addition to the operator

d of exterior differentiation, its formal adjoint a-(-1)nP++l*d* where * denotes
the usual duality operator carrying a differential form of degree p (p-form) into one
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